Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1453-1463, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239351

RESUMO

Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed. In addition, previous studies have suggested that sitagliptin may have pleiotropic effects other than treating T2DM. These pieces of evidence point to the importance of further investigation of the molecular mechanisms of sitagliptin, starting from the identification of sitagliptin-binding proteins. In this study, by combining affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), we discover seven high-confidence targets that can interact with sitagliptin. Surface plasmon resonance (SPR) assay confirms the binding of sitagliptin to three proteins, i. e., LYPLAL1, TCP1, and CCAR2, with binding affinities (K D) ranging from 50.1 µM to 1490 µM. Molecular docking followed by molecular dynamic (MD) simulation reveals hydrogen binding between sitagliptin and the catalytic triad of LYPLAL1, and also between sitagliptin and the P-loop of ATP-binding pocket of TCP1. Molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis indicates that sitagliptin can stably bind to LYPLAL1 and TCP1 in active sites, which may have an impact on the functions of these proteins. SPR analysis validates the binding affinity of sitagliptin to TCP1 mutant D88A is ~10 times lower than that to the wild-type TCP1. Our findings provide insights into the sitagliptin-targets interplay and demonstrate the potential of sitagliptin in regulating gluconeogenesis and in anti-tumor drug development.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Fosfato de Sitagliptina , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Diabetes Mellitus Tipo 2/induzido quimicamente , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Fosfato de Sitagliptina/farmacologia
2.
Comput Struct Biotechnol J ; 19: 5864-5873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815831

RESUMO

Alcohol dehydrogenase (ADH) has attracted much attention due to its ability to catalyze the synthesis of important chiral alcohol pharmaceutical intermediates with high stereoselectivity. ADH protein engineering efforts have generally focused on reshaping the substrate-binding pocket. However, distant sites outside the pocket may also affect its activity, although the underlying molecular mechanism remains unclear. The current study aimed to apply evolutionary coupling-inspired engineering to the ADH CpRCR and to identify potential mutation sites. Through conservative analysis, phylogenic analysis and residues distribution analysis, the co-evolution hotspots Leu34 and Leu137 were confirmed to be highly evolved under the pressure of natural selection and to be possibly related to the catalytic function of the protein. Hence, Leu34 and Leu137, far away from the active center, were selected for mutation. The generated CpRCR-L34A and CpRCR-L137V variants showed high stereoselectivity and 1.24-7.81 fold increase in k cat /K m value compared with that of the wild type, when reacted with 8 aromatic ketones or ß-ketoesters. Corresponding computational study implied that L34 and L137 may extend allosteric fluctuation in the protein structure from the distal mutational site to the active site. Moreover, the L34 and L137 mutations modified the pre-reaction state in multiple ways, in terms of position of the hydride with respect to the target carbonyl. These findings provide insights into the catalytic mechanism of the enzyme and facilitate its regulation from the perspective of the site interaction network.

3.
Elife ; 102021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33432922

RESUMO

We introduce a random-access parallel (RAP) imaging modality that uses a novel design inspired by a Newtonian telescope to image multiple spatially separated samples without moving parts or robotics. This scheme enables near-simultaneous image capture of multiple petri dishes and random-access imaging with sub-millisecond switching times at the full resolution of the camera. This enables the RAP system to capture long-duration records from different samples in parallel, which is not possible using conventional automated microscopes. The system is demonstrated by continuously imaging multiple cardiac monolayer and Caenorhabditis elegans preparations.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Microscopia/métodos , Animais , Coração/anatomia & histologia , Microscopia/classificação , Microscopia/instrumentação , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...